Contrastive preference optimization: Pushing the boundaries of LLM performance in machine translation

Haoran Xu

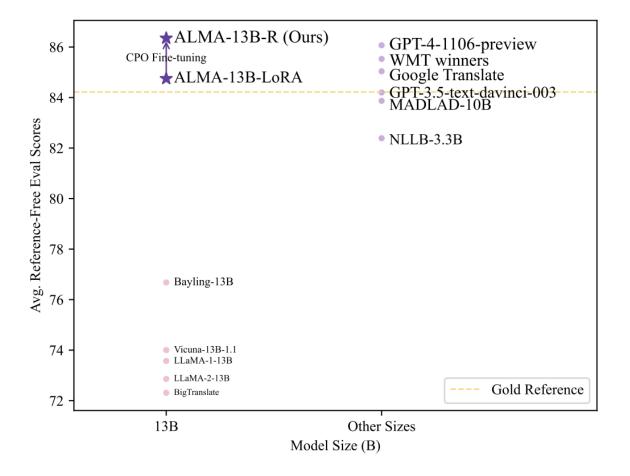
May 2024

To Appear @ICML 2024

ALMA Overview

What is ALMA (Advanced Language Model-Based TranslAtors)?

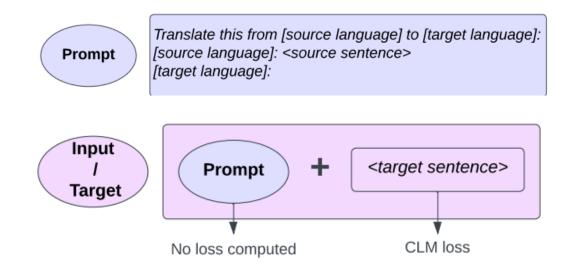
The first open-source LLM-based translation models which can beat GPT4



Better Instruction Tuning?

Fine-tune LLM on the translation task?

Reconsider the SFT objective, which is mimicking the gold reference. The performance can be capped by the quality of gold reference.



$$\mathcal{L}_{\text{NLL}} = -\mathbb{E}_{(x,y)\sim\mathcal{D}}[\log \pi_{\theta}(y|x)].$$

Beyond Gold References

Even human-written translations may not be perfect. Williams

We compare the quality between the gold references and translation outputs from ALMA-13B and GPT-4.

Source: 这是马特利 (Martelly) 四年来第五次入选海地临时选举委员会 (CEP)。

Reference: It is Martelly's fifth CEP in four years.

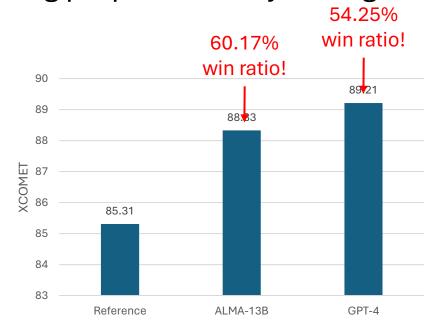
ALMA-13B-LoRA: This is Martelly's fifth time being selected by the Provisional **Electoral Council (CEP)** in four years.

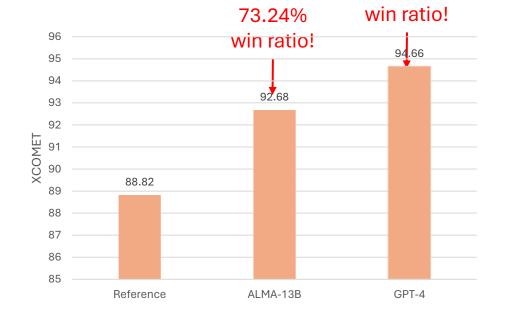
GPT-4: This is the fifth time Martelly has been selected for Haiti's Provisional **Electoral Council (CEP)** in four years.

Beyond Gold References

Gold or Gilded? Scrutinizing Gold Reference Quality

A big proportion of system-generated translations are better than references.





XCOMET: Unbabel/XCOMET-XXL

KIWI-XXL: Unbabel/wmt23-cometkiwi-da-xxl

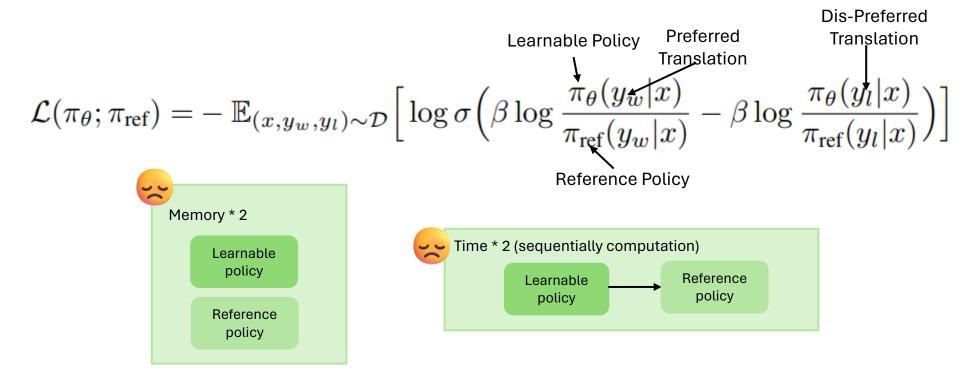
Beyond Gold References

Motivation: Help The Model Learn Rejection

What is the best way to utilized these high-quality system-generated data? We believe the model need to learn how to reject "good but not perfect" translation.

Contrastive Preference Optimization

Building Preference Learning for MT. A popular way is to use DPO^[1], a direct optimization in RLHF:



Contrastive Preference Optimization

Building Preference Learning for MT. A popular way is to use DPO^[1], a direct optimization in RLHF:

$$\mathcal{L}(\pi_{\theta}; \pi_{\mathrm{ref}}) = -\operatorname{\mathbb{E}}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\mathrm{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\mathrm{ref}}(y_l|x)} \Big) \Big]$$

$$\operatorname{Reference-Policy to}_{approximate the optimization?}$$

$$-\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \pi_{\theta}(y_w|x) - \beta \log \pi_{\theta}(y_l|x) \Big) \Big]$$

Contrastive Preference Optimization

The answer is Yes! But why?

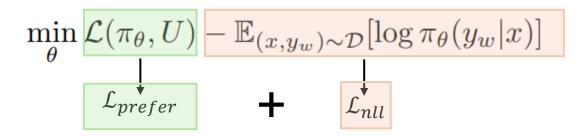
We only need to prove that $\mathcal{L}(\pi_{\theta}; \pi_{ref})$ is upper bounded by $\mathcal{L}(\pi_{\theta}; U)$

$$\mathcal{L}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \Big) \Big]$$
When reference policy is uniformly distributed
$$\mathcal{L}(\pi_{\theta}, U) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \pi_{\theta}(y_w | x) - \beta \log \pi_{\theta}(y_l | x) \Big) \Big]$$

Behavior Cloning Constraint: a straightforward and strong signal to prevent the model from deviating the preferred data distribution:

$$\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_{\text{ref}}(y_w | x) | | \pi_{\theta}(y_w | x)) \Big] < \epsilon$$

Equivalent to

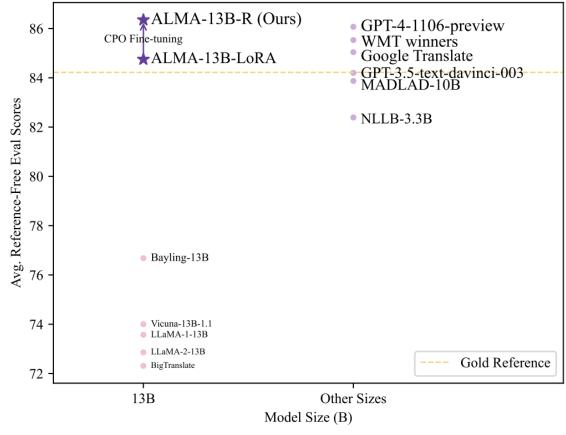


Experiments

Performance?

Evaluation tools:

- wmt22-cometkiwi-da
- KIWI-XXL
- XCOMET-XXL



Analyses

Analysis 1: CPO vs. DPO

Loss Objective	KIWI-22	TWI-22 KIWI-XXL XCOMET		Memory Cost	FLOPs/tok					
Translating to English ($xx\rightarrow en$)										
$\mathcal{L}_{ ext{DPO}}$	80.51	81.36	86.58	$2\times$	$2\times$					
$\mathcal{L}_{DPO} + \mathcal{L}_{NLL}$	81.28	82.42	89.05	$2\times$	$2\times$					
$\mathcal{L}_{ ext{prefer}} + \mathcal{L}_{ ext{NLL}}$ (CPO)	81.33	82.43	89.11	$1 \times$	$1 \times$					

Microsoft

Analysis 2: Does The Quality of Dis-preferred Data Matter?

We consider a baseline where dis-preferred data is **manually created** by noising preferred data:

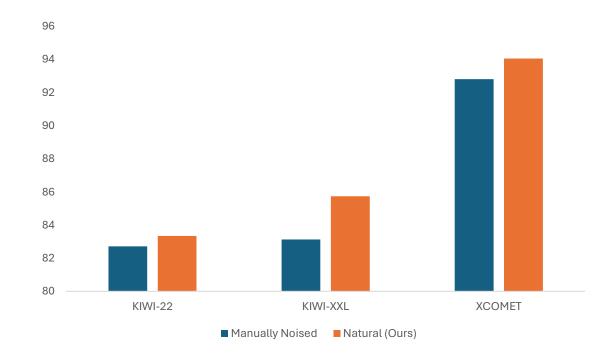
We applied random **deletions** of words with a probability of 0.15 and word **swaps** within a range of 1 with a probability of 0.3.

I like eating apples → like apples eating

Analyses

Analysis 2: Does The Quality of Dis-preferred Data Matter?

The quality of dis-preferred data does **matter**!



Conclusion

- Data Quality (even small!) is important.
- Maybe do not blindly trust the gold reference.
- Find a better alignment method:
 - SFT
 - DPO
 - CPO (CPO now is merged into huggingface now!)
 -

Many Thanks to My Collaborators!

Young Jin Kim

Amr Sharaf

Kenton Murray

Yunmo Chen

Hany Hassan Awadalla

Weiting Tan

Benjamin Van Durme

Lingfeng Shen

Questions?

Analyses

Microsoft

Analysis: Are Translations Really Better or Just Metric-Preferred?

Preferred data is selected by reference-free models and the same models are used for evaluation. Any "cheating" here?

In the method-level: Training on preferred data does not lead better performance on these metrics.

	KIWI-XXL
ALMA-13B	82.66
SFT on preferred data	82.42
DPO on preferred data	82.42
CPO on preferred data	85.74

Analyses

Microsoft

Analysis: Are Translations Really Better or Just Metric-Preferred?

Human Eval! 400 examples sampled from zh->en

	Avg. Score	Avg. Rank	Avg. Win Ratio (%)
ALMA-13B-LoRA	4.86	1.60	62.5
ALMA-13B-R	5.16	1.40	77.8

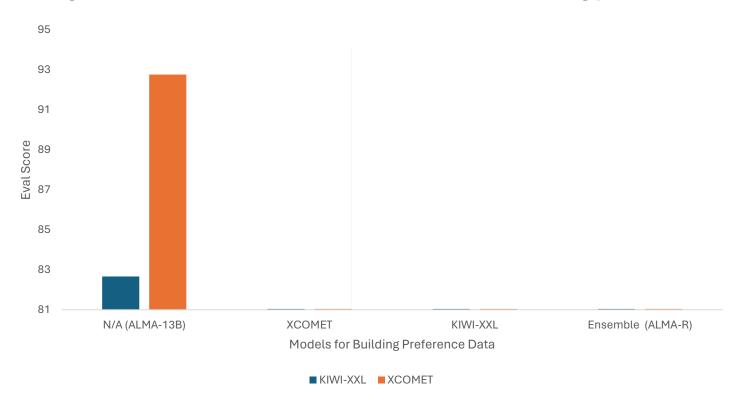
Appendix: Results on BLEURT

BLEURT-20	de	cs	is	zh	ru	Avg.			
Translating to English ($xx\rightarrow en$)									
ALMA-13B-LoRA	73.20	76.65	75.87	67.37	76.7	73.96			
ALMA-13B-R	73.62	76.94	76.98	69.48	76.91	74.79			
Translating from English ($en \rightarrow xx$)									
ALMA-13B-LoRA	75.51	80.93	73.19	70.54	74.94	75.02			
ALMA-13B-R	77.20	81.87	73.43	71.51	76.19	76.04			

Analyses

Analysis: Are Translations Really Better or Just Metric-Preferred?

In the <u>metric-level</u>: No significant bias towards the metric used for selecting preferred data:



Appendix: ALMA-R Results for xx→en

Models		de		CS			is		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	78.74	78.56	88.82	82.08	83.11	84.60	80.88	85.04	76.16
WMT Winners	81.38	83.59	93.74	82.47	82.53	85.65	81.39	85.60	78.14
GPT-4	81.50	84.58	94.47	82.52	83.55	88.48	81.49	85.90	81.11
ALMA-13B-LoRA	81.14	83.57	93.30	81.96	82.97	83.95	80.90	85.49	76.68
+ SFT on preferred data	81.36	83.98	93.84	82.36	83.15	86.67	81.32	85.61	80.20
+ DPO	81.13	83.52	93.25	81.82	82.69	83.84	80.89	85.22	76.09
+ CPO (Ours, ALMA-13B-R)	81.50	83.97	94.20	82.63	83.75	88.03	81.57	85.73	80.49
	zh			ru			Avg.		
Models	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	77.09	74.19	90.70	80.74	79.59	88.56	79.91	80.10	85.77
WMT Winners	77.66	73.28	87.2	81.71	80.97	90.91	80.92	81.19	87.13
GPT-4	79.33	77.65	92.06	81.57	81.34	90.95	81.28	82.60	89.41
ALMA-13B-LoRA	77.32	74.41	89.88	81.31	81.05	89.89	80.53	81.50	86.74
+ SFT on preferred data	78.32	76.03	90.65	81.46	81.17	90.65	80.96	81.99	88.40
+ DPO	77.50	74.50	89.94	81.19	80.88	89.76	80.51	81.36	86.58
+ CPO (Ours, ALMA-13B-R)	79.24	77.17	91.65	81.72	81.54	91.18	81.33	82.43	89.11

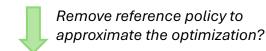
Appendix: ALMA-R Results on WMT'23

	de→en			zh→en			ru→en		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	78.93	75.96	84.23	74.46	68.80	83.51	79.46	77.84	83.60
WMT Winners	79.37	76.18	84.35	80.17	79.53	92.25	80.88	79.21	86.22
TowerInstruct	79.67	77.60	86.28	79.84	78.13	91.75	80.85	80.03	87.76
MADLAD-10B	78.52	75.50	83.85	77.68	73.72	88.07	79.65	77.58	85.15
ALMA-13B-LoRA	79.36	76.79	85.07	78.83	76.71	90.73	80.79	80.14	86.94
+ CPO (Ours, ALMA-13B-R)	79.87	77.69	86.62	80.01	78.42	92.36	81.11	80.95	88.75
		en→de		en→zh			en→ru		
	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET	KIWI-22	KIWI-XXL	XCOMET
Gold Reference	80.12	77.93	88.91	79.60	73.47	86.15	79.87	79.36	91.41
WMT Winners	80.80	77.26	87.94	79.70	74.20	87.24	82.51	79.95	91.41
TowerInstruct	80.13	75.34	86.55	80.03	74.85	86.74	81.33	77.14	89.59
MADLAD-10B	77.48	70.87	86.18	74.63	62.07	79.12	79.24	72.40	86.64
ALMA-13B-LoRA	78.79	73.40	85.61	78.92	72.95	85.13	80.21	76.02	89.48
+ CPO (Ours, ALMA-13B-R)	79.85	77.05	89.79	80.48	78.17	88.34	81.97	81.52	92.56

The answer is Yes! But why?

We only need to prove that $\mathcal{L}(\pi_{\theta}; \pi_{ref})$ is upper bounded by $\mathcal{L}(\pi_{\theta}; U)$

$$\mathcal{L}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right]$$



$$\mathcal{L}(\pi_{\theta}, U) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \pi_{\theta}(y_w | x) - \beta \log \pi_{\theta}(y_l | x) \Big) \Big]$$

Theorem 1. $\mathcal{L}(\pi_{\theta}; \pi_{ref})$ is upper bounded by $\mathcal{L}(\pi_{\theta}; U)$ if π_{ref} is an ideal policy that perfectly aligns the true data distribution of the preferred data.

$$\pi_{ref}(y_w|x) = 1$$

$$0 \le \pi_{ref}(y_l|x) \le 1$$

$$\mathcal{L}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x) = 1} \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right]$$

Theorem 1. $\mathcal{L}(\pi_{\theta}; \pi_{ref})$ is upper bounded by $\mathcal{L}(\pi_{\theta}; U)$ if π_{ref} is an ideal policy that perfectly aligns the true data distribution of the preferred data.

$$\mathcal{L}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \pi_{\theta}(y_w | x)^{\beta} - \log \Big(\pi_{\theta}(y_w | x)^{\beta} \cdot \overline{\pi_{\text{ref}}(y_l | x)^{\beta}} + \pi_{\theta}(y_l | x)^{\beta} \Big) \Big]$$

$$\leq -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \pi_{\theta}(y_w | x)^{\beta} - \log \Big(\pi_{\theta}(y_w | x)^{\beta} \cdot \overline{1} + \pi_{\theta}(y_l | x)^{\beta} \Big) \Big]$$

$$= -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \Big[\log \sigma \Big(\beta \log \pi_{\theta}(y_w | x) - \beta \log \pi_{\theta}(y_l | x) \Big) \Big].$$

$$= \mathcal{L}(\pi_{\theta}, U)$$

Additional Constraint: a straightforward and strong signal to prevent the model from deviating the preferred data distribution:

$$\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_{\text{ref}}(y_w | x) || \pi_{\theta}(y_w | x)) \Big] < \epsilon$$

Equivalent to

$$\min_{\theta} \mathcal{L}(\pi_{\theta}, U) - \mathbb{E}_{(x, y_w) \sim \mathcal{D}}[\log \pi_{\theta}(y_w | x)] + \mathcal{L}_{prefer}$$

$$\min_{\theta} \mathcal{L}(\pi_{\theta}, U) \text{ s.t. } \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_{\text{ref}}(y_w | x) || \pi_{\theta}(y_w | x)) \Big] < \epsilon$$

This is equivalent to the following objective via Lagrangian duality:

$$\min_{\theta} \mathcal{L}(\pi_{\theta}, U) + \lambda \cdot \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \Big[\mathbb{KL}(\pi_w(y_w|x) || \pi_{\theta}(y_w|x)) \Big]$$

$$\mathcal{L}_{CPO} = \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\mathbb{KL}(\pi_w(y_w|x) | | \pi_{\theta}(y_w|x)) \right]$$

$$= \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\pi_w(y_w|x) \cdot \log \left(\pi_w(y_w|x) \right) - \pi_w(y_w|x) \cdot \log \left(\pi_{\theta}(y_w|x) \right) \right]$$

$$= \mathcal{L}(\pi_{\theta}, U) + \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[1 \cdot 0 - 1 \cdot \log \left(\pi_{\theta}(y_w|x) \right) \right]$$

$$= \mathcal{L}(\pi_{\theta}, U) - \mathbb{E}_{(x, y_w) \sim \mathcal{D}} \left[\log \left(\pi_{\theta}(y_w|x) \right) \right].$$